CALIFORNIA REGIONAL WATER QUALITY CONTROL BOARD SAN DIEGO REGION

TENTATIVE MONITORING AND REPORTING PROGRAM NO. R9-2004-0378 NPDES PERMIT NO. CA0107239

UNIVERSITY OF CALIFORNIA SCRIPPS INSTITUTION OF OCEANOGRAPHY SAN DIEGO COUNTY

A. MONITORING PROVISIONS

- 1. Samples and measurements taken as required herein shall be representative of the volume and nature of the monitored discharge. All samples shall be taken at the monitoring points specified in Order No. R9-2004-0378 or in this monitoring and reporting program and, unless otherwise specified, before the monitored flow joins or is diluted by any other waste stream, body of water, or substance. Monitoring points shall not be changed without notification to and the approval of this Regional Board.
- 2. Appropriate flow measurement devices and methods consistent with accepted scientific practices shall be selected and used to ensure the accuracy and reliability of measurements of the volume of monitored discharges. The devices shall be installed, calibrated and maintained to ensure that the accuracy of the measurements are consistent with the accepted capability of that type of device. Devices selected shall be capable of measuring flows with a maximum deviation of less than ±10 percent from true discharge rates throughout the range of expected discharge volumes. Guidance in selection, installation, calibration and operation of acceptable flow measurement devices can be obtained from the following references:
 - a. "A Guide to Methods and Standards for the Measurement of Water Flow," U.S. Department of Commerce, National Bureau of Standards, NBS Special Publication 421, May 1975, 96 pp. (Available from the U.S. Government Printing Office, Washington, D.C. 20402. Order by SD Catalog No. C13.10:421.)
 - b. "Water Measurement Manual," U.S. Department of Interior, Bureau of Reclamation, Second Edition, Revised Reprint, 1974, 327 pp. (Available from the U.S. Government Printing Office, Washington D.C. 20402. Order by Catalog No. 172.19/2:W29/2, Stock No. S/N 24003-0027.)
 - c. "Flow Measurement in Open Channels and Closed Conduits," U.S. Department of Commerce, National Bureau of Standards, NBS Special Publication 484, October 1977, 982 pp. (Available in paper copy or microfiche from National Technical

Information Services (NTIS) Springfield, VA 22151. Order by NTIS No. PB-273 535/5ST.)

Draft Date: October 8, 2004

Proposed Adoption Date: November 10, 2004

- d. "NPDES Compliance Sampling Manual," U.S. Environmental Protection Agency, Office of Water Enforcement, Publication MCD-51, 1977, 140 pp. (Available from the General Services Administration (8FFS), Centralized Mailing Lists Services, Building 41, Denver Federal Center, CO 80225.)
- 3. Monitoring must be conducted according to United States Environmental Protection Agency (USEPA) test procedures approved under Title 40, United States Code of Federal Regulations (CFR), Part 136, *Guidelines Establishing Test Procedures for the Analysis of Pollutants Under the Clean Water Act* as amended, unless other test procedures are specified in Order No. R9-2004-0378 and/or in this Monitoring and Reporting Program and/or by this Regional Board.
- 4. Monitoring results must be reported on forms approved by this Regional Board. Duplicate copies of the monitoring reports signed and certified as required by Reporting Requirement F.11 of Order No. R9-2004-0378 must be submitted to the USEPA and the Regional Board at the addresses listed in Reporting Requirement F.13 of Order No. R9-2004-0378.
- 5. If the discharger monitors any pollutant more frequently than required by Order No. R9-2004-0378 or by this monitoring and reporting program, using test procedures approved under 40 CFR Part 136, or as specified in Order No. R9-2004-0378 or this Monitoring and Reporting Program or by this Regional Board, the results of this monitoring shall be included in the calculation and reporting of the data submitted in the discharger's monitoring report. The increased frequency of monitoring shall also be reported.
- 6. The discharger shall retain records of all monitoring information, including all calibration and maintenance records and all original strip chart recordings for continuous monitoring instrumentation, copies of all reports required by Order No. R9-2004-0378 and this monitoring and reporting program, and records of all data used to complete the application for Order No. R9-2004-0378, for a period of at least five years from the date of the sample, measurement, report, or application. This period may be extended by request of this Regional Board at any time.
- 7. Calculations for all limitations which require averaging of measurements shall utilize an arithmetic mean unless otherwise specified in Order No. R9-2004-0378 or this Monitoring and Reporting Program.

- 8. All analyses shall be performed in a laboratory certified to perform such analyses by the California Department of Health Services or a laboratory approved by this Regional Board.
- 9. The discharger shall report all instances of noncompliance not reported under Reporting Requirement F.6 of Order No. R9-2004-0378 at the time monitoring reports are submitted. The reports shall contain the information listed in Reporting Requirement F.6.
- 10. Records of monitoring information shall include:
 - a. The date, exact place, and time of sampling or measurements;
 - b. The individual(s) who performed the sampling or measurements;
 - c. The date(s) analyses were performed;
 - d. The individual(s) who performed the analyses;
 - e. The analytical techniques or methods used; and
 - f. The results of such analyses.
- 11. All monitoring instruments and devices used by the discharger to fulfill the prescribed monitoring program shall be properly maintained and calibrated as necessary to ensure their continued accuracy. All flow measurement devices shall be calibrated at least once per year to ensure continued accuracy of the devices.
- 12. Monitoring results shall be reported at intervals and in a manner specified in Order No. R9-2004-0378 or in this Monitoring and Reporting Program.
- 13. This monitoring program may be modified by this Regional Board, as appropriate.

B. EFFLUENT MONITORING

1. Table B and Table A Monitoring

Effluent monitoring for the seawater system and storm water discharge from Outfall 001, 002, 003, 004a, and 004b shall be conducted at the discharge point to the beach, and shall be conducted as noted in *Table 1. Monitoring Requirements for Protections of Marine Aquatic Life*, *Table 2. Monitoring Requirements for Protection of Human Health-Noncarcinogens, Table 3. Monitoring Requirements for Protection of Human Health-Carcinogens*, and *Table 4. Monitoring Requirements for Table A Effluent Limitations*.

The discharges from Outfall 001 shall be sampled and analyzed once during dry weather and once during a storm water discharge.

Draft Date: October 8, 2004 Proposed Adoption Date: November 10, 2004

The discharges from Outfall 002, 003, 004a and 004b shall be combined as a flow weighted composite and shall be sampled and analyzed once during dry weather and once during a storm water discharge.

Table 1. Monitoring Requirements for Protection of Marine Aquatic Life.

Constituent	Units	6-Month Median Effluent Limitation	Sample Type	Analysis Frequency	Reporting Frequency
flow	mgd		continuous	daily	quarterly
Total residual chlorine—Outfall 003 only, when in use	mg/L	6	grab	monthly	quarterly
arsenic	μg/L	18	composite	2/year**	Semi-annual
cadmium	μg/L	3	composite	2/year**	Semi-annual
chromium (hexavalent) ¹	μg/L	6	composite	2/year**	Semi-annual
Copper, Outfall 001, only	μg/L	5	composite	monthly	quarterly
Copper, other Outfalls	μg/L	5	composite	2/year**	Semi-annual
lead	μg/L	6	composite	2/year**	Semi-annual
mercury	μg/L	0.239	composite	2/year**	Semi-annual
nickel	μg/L	15	composite	2/year**	Semi-annual
selenium	μg/L	45	composite	2/year**	Semi-annual
silver	μg/L	1.78	composite	2/year**	Semi-annual
zinc	μg/L	44	composite	2/year**	Semi-annual
cyanide ²	μg/L	3	composite	2/year**	Semi-annual
total chlorine residual ³	μg/L	6	composite	2/year**	Semi-annual

¹ The discharger may, at its option, meet this limitation as a total chromium limitation.

If the discharger can demonstrate to the satisfaction of the Regional Board (subject to EPA approval) that an analytical method is available to reliably distinguish between strongly and weakly complexed cyanide, effluent limitations for cyanide may be met by the combined measurement of free cyanide, simple alkali metal cyanides, and weakly complexed organometallic cyanide complexes. In order for the analytical method to be acceptable, the recovery of free cyanide from metal complexes must be comparable to that achieved by Standard Methods 412 F, G, and H (Standard Methods for the Examination of Water and Wastewater, Joint Editorial Board, American Public Health Association, American Water Works Association, and Water Pollution Control Federation, most recent edition)

The effluent concentration and mass emission rate limitations for total chlorine residual are based on a continuous discharge of chlorine. Effluent concentration limitations for total chlorine residual, which are applicable to intermittent discharges not exceeding 2 hours, shall be determined through the use of the following

Constituent	Units	6-Month Median Effluent Limitation	Sample Type	Analysis Frequency	Reporting Frequency
ammonia (as N)	μg/L	1800	composite	2/year**	Semi-annual
acute toxicity ⁴	TUa	N/A	composite	2/year**	Semi-annual
chronic toxicity ⁵	TUc	N/A	composite	2/year**	Semi-annual
phenolic compounds (non-chlorinated)	μg/L	90	composite	2/year**	Semi-annual
chlorinated phenolics	μg/L	3	composite	2/year**	Semi-annual
endosulfan ⁶	μg/L	0.027	composite	2/year**	Semi-annual
endrin	μg/L	0.006	composite	2/year**	Semi-annual
HCH ⁷	μg/L	0.012	composite	2/year**	Semi-annual
radioactivity	Not to exceed limits specified in Title 17, Division 1, Chapter 5, Subsection 4, Group 3, Article 1, Section 30253 of the California Code of Regulations.		composite	2/year**	Semi-annual

equations:

log Co = -0.43 (log x) + 1.8Ce = Co + Dm (Co - Cs)

where:

Co = the concentration (in ug/L) to be met at the completion of initial dilution

x = the duration of uninterrupted chlorine discharge in minutes

Ce = the effluent concentration limitation $(in^{ug/L})$ to apply when chlorine is being intermittently discharged

Dm = the minimum probable initial dilution

Cs = the background seawater concentration = 0

- Chronic toxicity monitoring shall comply with methods and species as specified in the 2001 Ocean Plan.
- Endosulfan shall mean the sum of endosulfan-alpha and -beta and endosulfan sulfate.
- 7 HCH shall mean the sum of the alpha, beta, gamma (lindane) and delta isomers of hexachlorocyclohexane.

⁴ Acute toxicity monitoring shall comply with methods and species as specified in the 2001 Ocean Plan and Resolution No. 2004-0052.

Table 2. Monitoring Requirements for Protection of Human Health-Noncarcinogens.

Constituent	Units	Monthly Average (30-day) Effluent Limitation	Sample Type	Analysis Frequency	Reporting Frequency
Acrolein	μg/L	660	composite	2/year**	Semi-annual
Antimony	μg/L	3600	composite	2/year**	Semi-annual
bis(2-chloroethoxy) methane	μg/L	13.2	composite	2/year**	Semi-annual
bis(2-chloroisopropyl) ether	μg/L	3600	composite	2/year**	Semi-annual
Chlorobenzene	μg/L	1710	composite	2/year**	Semi-annual
Chromium (III) ⁴	μg/L	570,000	composite	2/year**	Semi-annual
di-n-butyl phthalate	μg/L	10,500	composite	2/year**	Semi-annual
Dichlorobenzenes ⁸	μg/L	15,300	composite	2/year**	Semi-annual
diethyl phthalate	μg/L	99,000	composite	2/year**	Semi-annual
dimethyl phthalate	μg/L	2,460,000	composite	2/year**	Semi-annual
4,6-dinitro-2-methylphenol	μg/L	660	composite	2/year**	Semi-annual
2,4-dinitrophenol	μg/L	12	composite	2/year**	Semi-annual
ethylbenzene	μg/L	12,300	composite	2/year**	Semi-annual
fluoranthene	μg/L	45	composite	2/year**	Semi-annual
hexachlorocyclopentadiene	μg/L	174	composite	2/year**	Semi-annual
nitrobenzene	μg/L	14.7	composite	2/year**	Semi-annual
thallium	μg/L	6	composite	2/year**	Semi-annual
toluene	μg/L	255,000	composite	2/year**	Semi-annual
tributyltin	μg/L	0.0042	composite	2/year**	Semi-annual
1,1,1-trichloroethane	μg/L	1,620,000	composite	2/year**	Semi-annual

⁸ Dichlorobenzenes shall mean the sum of 1,2- and 1,3-dichlorobenzene.

Draft Date: October 8, 2004 Proposed Adoption Date: November 10, 2004

Table 3. Monitoring Requirements for Protection of Human Health-Carcinogens.

Constituent	Units	Monthly Average (30-day)	Sample Type	Sample Frequency	Reporting Frequency
		Effluent Limitation			
acrylonitrile	μg/L	0.3	composite	2/year**	Semi-annual
Aldrin	μg/L	0.000066	composite	2/year**	Semi-annual
Benzene	μg/L	17.7	composite	2/year**	Semi-annual
Benzidine	μg/L	0.000207	composite	2/year**	Semi-annual
Beryllium	μg/L	0.099	composite	2/year**	Semi-annual
bis(2-chloroethyl) ether	μg/L	0.135	composite	2/year**	Semi-annual
bis(2-ethylhexyl) phthalate	μg/L	10.5	composite	2/year**	Semi-annual
carbon tetrachloride	μg/L	2.7	composite	2/year**	Semi-annual
Chlordane ⁹	μg/L	0.000069	composite	2/year**	Semi-annual
chlorodibromomethane	μg/L	25.8	composite	2/year**	Semi-annual
chloroform	μg/L	390	composite	2/year**	Semi-annual
DDT ¹⁰	μg/L	0.00051	composite	2/year**	Semi-annual
1,4-dichlorobenzene	μg/L	54	composite	2/year**	Semi-annual
3,3'-dichlorobenzidine	μg/L	0.0243	composite	2/year**	Semi-annual
1,2-dichloroethane	μg/L	84	composite	2/year**	Semi-annual
1,1-dichloroethylene	μg/L	2.7	composite	2/year**	Semi-annual
dichlorobromomethane	μg/L	18.6	composite	2/year**	Semi-annual
dichloromethane	μg/L	1350	composite	2/year**	Semi-annual
1,3-dichloropropene	μg/L	26.7	composite	2/year**	Semi-annual
Dieldrin	μg/L	0.00012	composite	2/year**	Semi-annual

⁹ Chlordane shall mean the sum of chlordane-alpha, chlordane-gamma, chlordene-alpha, chlordene-gamma, nonachlor-alpha, nonachlor-gamma, and oxychlordane.

DDT shall mean the sum of 4,4'DDT, 2,4'DDT, 4,4'DDE, 2,4'DDE, 4,4'DDD, and 2,4'DDD.

Constituent	Units	Monthly Average (30-day) Effluent Limitation	Sample Type	Sample Frequency	Reporting Frequency
2,4-dinitrotoluene	μg/L	7.8	composite	2/year**	Semi-annual
1,2-diphenylhydrazine	μg/L	0.48	composite	2/year**	Semi-annual
halomethanes ¹¹	μg/L	390	composite	2/year**	Semi-annual
heptachlor ¹²	μg/L	0.00015	composite	2/year**	Semi-annual
Heptachlor epoxide	μg/L	0.00006	composite	2/year**	Semi-annual
hexachlorobenzene	μg/L	0.00063	composite	2/year**	Semi-annual
hexachlorobutadiene	μg/L	42	composite	2/year**	Semi-annual
hexachloroethane	μg/L	7.5	composite	2/year**	Semi-annual
isophorone	μg/L	2190	composite	2/year**	Semi-annual
N-nitrosodimethylamine	μg/L	21.9	composite	2/year**	Semi-annual
N-nitrosodi-N-propylamie		1.14	composite	2/year**	Semi-annual
N-nitrosodiphenylamine	μg/L	7.5	composite	2/year**	Semi-annual
PAHs ¹³	μg/L	0.0264	composite	2/year**	Semi-annual
PCBs ¹⁴	μg/L	0.000057	composite	2/year**	Semi-annual
TCDD equivalents ¹⁵	μg/L	0.0000000117	composite	2/year**	Semi-annual

Halomethanes shall mean the sum of bromoform, bromomethane (methyl bromide), chloromethane (methyl chloride), chlorodibromomethane, and dichlorobromomethane.

- PAHs (polynuclear aromatic hydrocarbons) shall mean the sum of acenaphthylene, anthracene, 1,2-benzanthracene, 3,4-benzofluoranthene, benzo[k]fluoranthene, 1,12-benzoperylene, benzo[a]pyrene, chrysene, dibenzo[ah]anthracene, fluorene, indeno[1,2,3-cd]pyrene, phenanthrene and pyrene.
- PCBs (polychlorinated biphenyls) shall mean the sum of chlorinated biphenyls whose analytical characteristics resemble those of Aroclor-1016, Aroclor-1221, Aroclor-1232, Aroclor-1242, Aroclor-1248, Aroclor-1254 and Aroclor-1260.
- TCDD EQUIVALENTS shall mean the sum of the concentrations of chlorinated dibenzodioxins (2,3,7,8-CDDs) and chlorinated dibenzofurans (2,3,7,8-CDFs) multiplied by their respective toxicity factors, as shown in the table below.

Isomer Group	Toxicity Equivalence Factor
2,3,7,8-tetra CDD	1.0
2,3,7,8-penta CDD	0.5

¹² Heptachlor shall mean the sum of heptachlor and heptachlor epoxide.

Constituent	Units	Monthly Average (30-day) Effluent Limitation	Sample Type	Sample Frequency	Reporting Frequency
1,1,2,2-tetrachloroethane	μg/L	6.9	composite	2/year**	Semi-annual
tetrachloroethylene	μg/L	6	composite	2/year**	Semi-annual
toxaphene	μg/L	0.00063	composite	2/year**	Semi-annual
trichloroethylene	μg/L	81	composite	2/year**	Semi-annual
1,1,2-trichloroethane	μg/L	28.2	composite	2/year**	Semi-annual
2,4,6-trichlorophenol	μg/L	0.87	composite	2/year**	Semi-annual
vinyl chloride	μg/L	108	composite	2/year**	Semi-annual

Table 4. Monitoring Requirements for Table A Effluent Limitations.

Constituent	Units	Monthly Average (30 day)	Sample Type	Sample Frequency	Reporting Frequency
oil & grease	mg/L	25	grab	2/year**	Semi-annual
Suspended solids	mg/L	See below +	grab	2/year**	Semi-annual
settleable solids	mL/L	1.0	grab	2/year**	Semi-annual
Turbidity	NTU	75	grab	2/year**	Semi-annual
рН	pH units	Within limits of 6.0 - 9.0 at all times.	grab	2/year**	Semi-annual

2,3,7,8-hexa CDDs	0.1
2,3,7,8-hepta CDD	0.01
octa CDD	0.001
2,3,7,8 tetra CDF	0.1
1,2,3,7,8 penta CDF	0.05
2,3,4,7,8 penta CDF	0.5
2,3,7,8 hexa CDFs	0.1
2,3,7,8 hepta CDFs	0.01
octa CDF	0.001

** The 2/year monitoring frequency is May-September (dry weather) and October—April (wet weather). The sample taken during the October—April monitoring period must be taken during a storm water discharge.

Draft Date: October 8, 2004

Proposed Adoption Date: November 10, 2004

+ The 2001 Ocean Plan requires the following:

Suspended Solids: Dischargers shall, as a 30-day average, remove 75% of suspended solids from the influent stream before discharging wastewaters to the ocean, except that the effluent limitation to be met shall not be lower than 60 mg/L.

Note: mgd = million gallons per day ppt = parts per thousand ml/L = milliliters per liter

mg/L = milligrams per liter $\mu g/l = micrograms$ per liter

2. Bacteria Monitoring

Annually, the discharges from Outfall 001 shall be sampled and analyzed twice, once during dry weather discharge and once during a storm water discharge for fecal coliform, total coliform organisms, and enterococcus.

Annually, the discharges from Outfall 002, 003, 004a and 004b shall be combined as a flow weighted composite and shall be sampled and analyzed twice, once during dry weather discharge and once during a storm water discharge for fecal coliform, total coliform organisms, and enterococcus.

When in use, Outfall 003, shall be sampled and analyzed monthly for fecal coliform, total coliform organisms, and enterococcus.

C. RECEIVING WATER, SEDIMENT, AND OCEAN PLAN BACTERIAL MONITORING

1. Receiving Water Monitoring, semi-annual reporting

Receiving water monitoring shall be conducted at a location to be determined by the Regional Board. The Receiving Water shall be monitored for the applicable constituents listed in Tables 1 through 4 above. The sampling must be conducted once during dry weather and once during a storm water discharge. The sampling during a storm water discharge event must occur either during the storm water discharge or after the storm has passed and when SIO can safely collect a receiving water sample that is representative of storm water discharge conditions.

2. Sediment Monitoring, semi-annual reporting

Sediment monitoring shall be conducted at a location to be determined by this Regional Board. The sediment shall be monitored for the applicable constituents listed in Tables 1 through 4 above and shall be analyzed as a solid waste and reported as mg/kg (dry-weight). The sampling must be conducted once during dry weather and once during a storm water discharge. The sampling during a storm water discharge event must occur either during the storm water discharge or after the storm has passed and when SIO can safely collect a sediment sample.

Draft Date: October 8, 2004

Proposed Adoption Date: November 10, 2004

3. Ocean Plan bacterial water quality objectives – *Surf Zone* and *Nearshore* Monitoring, quarterly reporting.

Surf zone monitoring is intended to assess bacteriological conditions in areas used for body-contact activities (e.g., swimming); and to assess aesthetic conditions for general recreational uses (e.g., picnicking).

All surf zone stations shall be monitored as follows:

- a. Grab samples shall be collected and analyzed for total and fecal coliforms, and enterococcus at a minimum frequency of once per week throughout the year with at least five samples collected within any 30-day period.
- b. Samples shall be collected in accordance with "Standard Operating Procedures for the Collection of Water Samples for Bacterial Analysis from Ocean and Bay Receiving Waters" developed by the County of San Diego Department of Environmental Health and incorporated herein by reference.
- c. At the same time samples are collected from *surf zone stations*, the following information shall be recorded: observation of wind (direction and speed), weather (e.g., cloudy, sunny, or rainy), current (e.g., direction), and tidal conditions; observations of water color, discoloration, oil and grease, turbidity, odor, and materials of sewage, storm water, or seawater system origin in the water or on the beach; and water temperature (°C).

Nearshore monitoring is intended to assess bacteriological conditions in areas used for bodycontact activities (e.g. scuba diving) and where shellfish and/or kelp may be harvested; and to assess aesthetic conditions for general boating and recreational uses.

stitution of Oceanography Proposed Adoption Date: November 10, 2004

Draft Date: October 8, 2004

All *nearshore stations* shall be monitored as follows:

- d. Grab samples shall be collected and analyzed for total and fecal coliforms, and enterococcus at a minimum frequency of once per month throughout the year.
- e. At the same time samples are collected from *nearshore stations*, the following information shall be recorded: observation of wind (direction and speed), weather (e.g., cloudy, sunny, or rainy), current (e.g., direction), and tidal conditions; observations of water color, discoloration, oil and grease, turbidity, odor, and materials of sewage, storm water, or seawater system origin in the water or on the beach; and water temperature (°C).

Monitoring Station Locations

Station	Description	
	Surf Zone Stations	
S 1	Surf zone, 1,000 feet south of the SIO Pier.	
S2	Surf zone, 500 feet south of the SIO Pier.	
S 3	Surf zone, at Outfall 001 (just north of SIO Pier).	
S4	Surf zone, 500 feet north of the SIO Pier.	
S5	Surf zone, 1,000 feet north of the SIO Pier.	
	Nearshore Stations	
N1	Opposite S1, at a distance of 1,000 feet from the shoreline or the 30-foot depth contour, whichever is further from the shoreline, MLLW.	
N2	Opposite S2, at a distance of 1,000 feet from the shoreline or the 30-foot depth contour, whichever is further from the shoreline, MLLW.	
N3	Opposite S3, at a distance of 1,000 feet from the shoreline or the 30-foot depth contour, whichever is further from the shoreline, MLLW.	
N4	Opposite S4, at a distance of 1,000 feet from the shoreline or the 30-foot depth contour, whichever is further from the shoreline, MLLW.	
N5	Opposite S5, at a distance of 1,000 feet from the shoreline or the 30-foot depth contour, whichever is further from the shoreline, MLLW.	

D. LOGS AND OPERATIONAL INFORMATION

- 1. Quarterly, the discharger must submit a log of all chemical additives discharged via the seawater system. The log must include the time, date, concentration, quantity, location, identification of personnel that added the chemicals, and Outfall that discharged the chemicals.
- 2. Quarterly, the discharge must report the daily flow rate from Outfall 001 and an estimate of flow rates from Outfall 002, 003, 004a, and 004b. If flow meters are installed on Outfall 002, 003, 004a or 004b, then the recorde daily flow rate must be reported. The log must also identify the days when storm water discharges occur from each Outfall.

Draft Date: October 8, 2004

Proposed Adoption Date: November 10, 2004

E. PROVISIONS

All reports submitted in response to this Order shall comply with signatory requirements specified in *Reporting Requirement F.11* of this Order.

The discharger shall implement the above monitoring program on the first day of the month following the effective date of this Order.

F. MONITORING AND REPORTING SCHEDULE

Monitoring reports shall be submitted to this Regional Board according to the dates in *Table 5*. *Monitoring and Reporting Schedule*.

Table 5. Monitoring and Reporting Schedule.

Reporting Frequency	Report Period	Report Due
Quarterly	January through March	May 1
Quarterly	April through June	August 1
Quarterly	July through September	November 1
Quarterly	October through December	February 1
Semi-annually	January through June	May 1
Semi-annually	July though December	February 1

Draft Date: October 8, 2004 Proposed Adoption Date: November 10, 2004

G. ENDNOTE REFERENCES

- 1. A grab sample is defined as an individual sample of at least 100 milliliters collected over a period not exceeding 15 minutes. Grab samples shall be collected over a shorter period if necessary to ensure that the constituent/parameter concentration in the sample is the same as that at the sampling location at the time the sample is collected.
- 2. A composite sample is defined as a combination of at least eight sample aliquots of at least 100 milliliters, collected at periodic intervals during the operating hours of a facility over a 24-hour period. For volatile pollutants, aliquots must be combined in the laboratory immediately before analysis. The composite must be flow proportional; either the time interval between each aliquot or the volume of each aliquot must be proportional to either the stream flow at the time of sampling or the total stream flow since the collection of the previous aliquot. Aliquots may be collected manually or automatically.

Ordered by: _____tentative____

JOHN H. ROBERTUS Executive Officer November 10, 2004